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This is a shortened version of an invited talk at the XIII International Workshop “Lie Theory
and its Applications in Physics”, June 17-23, Varna, Bulgaria. We present a concise description
of the basic features of gravity-matter models based on the formalism of non-canonical spacetime
volume-forms in its two versions: the method of non-Riemannian volume-forms (metric-independent
covariant volume elements) and the dynamical spacetime formalism. Among the principal outcomes
we briefly discuss: (i) quintessential universe evolution with a gravity-“inflaton”-assisted suppression
in the “early” universe and, respectively, dynamical generation in the “late” universe of Higgs
spontaneous electroweak gauge symmetry breaking; (ii) unified description of dark energy and dark
matter as manifestations of a single material entity – a second scalar field “darkon”; (iii)unification
of dark energy and dark matter with diffusive interaction among them; (iv) explicit derivation of a
stable “emergent universe” solution, i.e., a creation without Big Bang; (v) mechanism for suppression
of 5-th force without fine-tuning.

1. Non-Riemannian Volume-Form Formal-
ism - Extended (modified) gravity theories as alterna-
tives/generalizations of the standard Einstein General
Relativity (for detailed accounts, see Refs. [1]-[4]) are
being widely studied in the last decade or so due to press-
ing motivation from cosmology (problems of dark energy
and dark matter), quantum field theory in curved space-
time (renormalization in higher loops) and string theory
(low-energy effective field theories).

A broad class of actively developed modified/extended
gravitational theories is based on employing alterna-
tive non-Riemannian spacetime volume-forms (metric-
independent generally covariant volume elements) in the
pertinent Lagrangian actions instead of the canonical
Riemannian one given by the square-root of the deter-
minant of the Riemannian metric (originally proposed in
[5, 6], for a concise geometric formulation, see [7, 8]).
A characteristic feature of these extended gravitational
theories is that when starting in the first-order (Palatini)
formalism the non-Riemannian volume-forms are almost
pure-gauge degrees of freedom, i.e. they do not introduce
any additional propagating gravitational degrees of free-
dom except for few discrete degrees of freedom appearing
as arbitrary integration constants (for a canonical Hamil-
tonian treatment, see Appendices A in Refs.[8, 9]).

Let us recall that volume-forms in integrals over differ-
entiable manifolds (not necessarily Riemannian one, so
no metric is needed) are given by nonsingular maximal
rank differential forms ω:∫

M
ω
(
. . .
)

=

∫
M
dxD Ω

(
. . .
)
,

ω =
1

D!
ωµ1...µD

dxµ1 ∧ . . . ∧ dxµD , (1)

ωµ1...µD
= −εµ1...µD

Ω ,

(our conventions for the alternating symbols εµ1,...,µD

and εµ1,...,µD
are: ε01...D−1 = 1 and ε01...D−1 = −1).

The volume element Ω transforms as scalar density un-
der general coordinate reparametrizations.

In standard generally-covariant theories (with action
S =

∫
dDx
√
−gL) the Riemannian spacetime volume-

form is defined through the “D-bein” (frame-bundle)
canonical one-forms eA = eAµ dx

µ (A = 0, . . . , D − 1):

ω = e0 ∧ . . . ∧ eD−1 = det ‖eAµ ‖ dxµ1 ∧ . . . ∧ dxµD

−→ Ω = det ‖eAµ ‖ dDx =
√
−det ‖gµν‖ dDx . (2)

Instead of
√
−g we can employ another alternative

non-Riemannian volume element as in (1) given by a
non-singular exact D-form ω = dB where:

B =
1

(D − 1)!
Bµ1...µD−1

dxµ1 ∧ . . . ∧ dxµ−1

−→ Ω ≡ Φ(B) =
1

(D − 1)!
εµ1...µD ∂µ1

Bµ2...µD
. (3)

In other words, the non-Riemannian volume element is
defined in terms of the dual field-strength of an auxiliary
rank D − 1 tensor gauge field Bµ1...µD−1

.

To illustrate the main interesting properties of the
new class of extended gravity-matter models based on
the non-Riemannian volume-form formalism we will con-
sider gravity in the Palatini formalism coupled in a non-
standard way via non-Riemannian volume elements to
[9–11]: (i) scalar “inflaton” field ϕ; (ii) a second scalar
“darkon” field u; (iii) the bosonic fields of the standard
electroweak particle model – σ ≡ (σa) being a com-
plex SU(2)× U(1) iso-doublet Higgs-like scalar, and the

SU(2)× U(1) gauge fields ~Aµ,Bµ.
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The “inflaton” ϕ apart from driving the cosmological
evolution triggers suppression, respectively, generation of
the electroweak (Higgs) spontaneous symmetry breaking
in the “early”, respectively, in the “late” universe. The
“darkon” u is responsible for the unified description of
dark energy and dark matter in the “late” universe.

The corresponding action reads (for simplicity we use
units with the Newton constant GN = 1/16π):

S =

∫
d4xΦ1(A)

[
R+ L(1)(ϕ, σ)

]
+

∫
d4xΦ2(B)

[
L(2)(ϕ, ~A,B) +

Φ4(H)√
−g

]
−
∫
d4x

(√
−g + Φ3(C)

)1

2
gµν∂µu∂νu . (4)

Here the following notations are used:
(i) Φ1(A),Φ2(B),Φ3(C) are three independent non-

Riemannian volume elements as in (3) for D = 4; Φ4(H)
is again of the form (3) for D = 4 and it is needed for
consistency of (4).

(ii)The scalar curvature R in Palatini formalism is R =
gµνRµν(Γ), where the Ricci tensor is a function of the
affine connection Γλµν apriori independent of gµν .

(iii) The matter field Lagrangians are:

L(1)(ϕ, σ) ≡ −1

2
gµν∂µϕ∂νϕ− f1e

−αϕ

−gµν(∇µσ)∗a∇νσa −
λ

4

(
(σa)∗σa − µ2

)2
, (5)

L(2)(ϕ, ~A,B) = − b
2
e−αϕgµν∂µϕ∂νϕ+ f2e

−2αϕ

− 1

4g2
F 2( ~A)− 1

4g′ 2
F 2(B) , (6)

where α, f1, f2 are dimensionful positive parameters,
whereas b is a dimensionless one (b is needed to obtain
a stable “emergent” universe solution, see below (25).

F 2( ~A) and F 2(B) in (6) are the squares of the field-
strengths of the electroweak gauge fields, and the last
term in (5) is of the same form as the standard Higgs
potential.

Let us note that the form of the “inflaton” part of the
action (4) is fixed by the requirement of invariance under
global Weyl-scale transformations:

gµν → λgµν , Γµνλ → Γµνλ , ϕ→ ϕ+
1

α
lnλ ,

Aµνκ → λAµνκ , Bµνκ → λ2Bµνκ , Hµνκ → Hµνκ . (7)

Scale invariance played an important role in the origi-
nal papers on the non-canonical volume-form formalism
where also fermions were included [6] (see also Secton 3
below).

The equations of motion of the initial action (4) w.r.t.
auxiliary tensor gauge fields Aµνλ, Bµνλ, Cµνλ and Hµνλ

yield the following algebraic constraints:

R+ L(1) = M1 = const , L(2) +
Φ4(H)√
−g

= −M2 = const ,

− 1

2
gµν∂µu∂νu = M0 = const ,

Φ2(B)√
−g

≡ χ2 = const ,

(8)
where M0,M1,M2 are arbitrary dimensionful and χ2 an
arbitrary dimensionless integration constants.

The equations of motion of (4) w.r.t. affine connection
Γµνλ yield a solution for Γµνλ as a Levi-Civita connection
Γµνλ = Γµνλ(ḡ) = 1

2 ḡ
µκ (∂ν ḡλκ + ∂λḡνκ − ∂κḡνλ) w.r.t. to

the a Weyl-rescaled metric ḡµν = χ1gµν , χ1 ≡ Φ1(A)√
−g .

The passage to the “Einstein-frame” (EF) is accom-
plished by a Weyl-conformal transformation to ḡµν upon
using relations (8), so that the EF action with a canoni-
cal Hilbert-Einstein gravity part w.r.t. ḡµν and with the

canonical Riemannian volume element
√

det || − ḡµν ||
reads:

SEF =

∫
d4x
√
−ḡ
[
R(ḡ) + LEF

]
, (9)

and where the EF matter Lagrangian turns out to be
of a quadratic “k-essence” type [12]-[15] w.r.t. both the
“inflaton” ϕ and “darkon” u fields:

LEF = X̄ − Ȳ
[
f1e
−αϕ +

λ

4

(
(σa)∗σa − µ2

)2
+M1

−χ2be
−αϕX̄

]
+ Ȳ 2

[
χ2(f2e

−2αϕ +M2) +M0

]
(10)

+L[σ, ~A,B] ,

with L[σ, ~A,B] ≡ −ḡµν(∇µσa)∗∇νσa − χ2

4g2 F̄
2( ~A) −

χ2

4g′ 2 F̄
2(B). In (10) all quantities defined in terms of

the EF metric ḡµν are indicated by an upper bar,
and the following short-hand notations are used: X̄ ≡
− 1

2 ḡ
µν∂µϕ∂νϕ , Ȳ ≡ − 1

2 ḡ
µν∂µu∂νu.

From (10) we deduce the following full effective scalar
potential:

Ueff

(
ϕ, σ

)
=

(
f1e
−αϕ + λ

4

(
(σa)∗σa − µ2

)2
+M1

)2

4
[
χ2(f2e−2αϕ +M2) +M0

]
(11)

As discussed in Refs.[10, 11] Ueff(ϕ, σ (11) has few re-
markable properties. First, Utotal(ϕ, σ) possesses two in-
finitely large flat regions as function of ϕ when σ is fixed:

(a) (-) flat “inflaton” region for large negative values of
ϕ corresponding to the evolution of the “early” universe;

(b) (+) flat “inflaton” region for large positive values
of ϕ with σ fixed corresponding to the evolution of the
“late” universe”.

In the (-) flat “inflaton” region, i.e., in the “early”
universe the effective scalar field potential (11) reduces
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to (an aproximately) constant value

Ueff

(
ϕ, σ

)
' U(−) =

f2
1

4χ2 f2
(12)

Thus, there is no σ-field potential and, therefore, no elec-
troweak spontaneous breakdown in the “early” universe.

On the other hand, in the (+) flat “inflaton” region,
i.e., in the “late” universe the effective scalar field poten-
tial becomes:

Ueff

(
ϕ, σ

)
' U(+)(σ) =

(
λ
4

(
(σa)∗σa − µ2

)2
+M1

)2

4
(
χ2M2 +M0

) ,

(13)
which obviously yields nontrivial vacuum for the Higgs-
like field |σvac| = µ. Therefore, in the “late” universe we
have the standard spontaneous breakdown of electroweak
SU(2)× U(1) gauge symmetry. Moreover, at the Higgs
vacuum we obtain from (13) a dynamically generated cos-
mological constant Λ(+) of the “late” Universe:

U(+)(µ) ≡ 2Λ(+) =
M2

1

4
(
χ2M2 +M0

) . (14)

If we identify the integration constants with the funda-
mental scales in Nature as M0,1 ∼ M4

EW and M2 ∼
M4
Pl, where where MPl is the Planck mass scale and

MEW ∼ 10−16MPl is the electroweak mass scale, then
Λ(+) ∼ M8

EW /M
4
Pl ∼ 10−120M4

Pl , which is the right or-
der of magnitude for the present epoch’s vacuum energy
density as already realized in [16].

On the other hand, if we take the order of magnitude
of the coupling constants in the effective potential (11)
f1 ∼ f2 ∼ (10−2MPl)

4, then the order of magnitude of
the vacuum energy density of the “early” universe (12)
becomes:

U(−) ∼ f2
1 /f2 ∼ 10−8M4

Pl , (15)

which conforms to the Planck Collaboration data [17, 18]
implying the energy scale of inflation of order 10−2MPl.

Now, performing FLRW reduction of the EF action (9)
we obtain in the “late” universe, i.e., for large positive
“inflaton” ϕ values the following results for the density,
pressure, the Friedmann scale factor (the solution for a(t)
below first appeared in [19]) and the “inflaton” velocity:

ρ =
M2

1

4(χ2M2 +M0)
+
πu
a3

[ M1

χ2M2 +M0

] 1
2

+ O
(π2

u

a6

)
,(16)

p = − M2
1

4(χ2M2 +M0)
+ O

(π2
u

a6

)
,(17)

a(t) '
( C0

2Λ(+)

)1/3

sinh2/3
(√3

4
Λ(+) t

)
, (18)

.
ϕ' const sinh−2

(√3

4
Λ(+) t

)
, (19)

where πu is the conserved “darkon” canoni-
cal momentum, Λ(+) is as in (14) and C0 ≡
πu
√
M1(χ2M2 +M0)−1.

Relations (16)-(17) straightforwardly show that in the
“late” universe we have explicit unification of dark en-
ergy (given by the dynamically generated cosmological
constant (14) – first constant terms on the r.h.sides in
(16) and (17), and dark matter given as a “dust” fluid
contribution – second term O(a−3) on the r.h.s. of (16).

A further interesting property under consideration is
the existence of a stable “emergent” universe solution –
a creation without Big Bang (cf. Refs.[21, 22]). It is
characterized by the condition on the Hubble parameter
H:

H = 0 → a(t) = a0 = const , ρ+ 3p = 0 ,

K

a2
0

=
1

6
ρ (= const) , (20)

and the “inflaton” is on the (−) flat region (large nega-
tive values of ϕ). Then relations (20) together with the
“inflaton” and “darkon” equations of motion imply that
also “inflaton” velocity

.
ϕ= const and the constant den-

sity and pressure read:

ρ ' −3χ2b
2

16f2

.
ϕ

4 1

2

.
ϕ

2
(

1 +
bf1

2f2

)
+

f2
1

4χ2f2
, (21)

p ' −χ2b
2

16f2

.
ϕ

4 1

2

.
ϕ

2
(

1 +
bf1

2f2

)
− f2

1

4χ2f2
. (22)

The truncated Friedmann Eqs.(20) yield exact solutions
for the constant “inflaton” velocity

.
ϕ0 and Friedmann

factor a0:

.
ϕ

2

0=
8f2

3χ2b2

[
1 +

bf1

2f2
−

√(
1 +

bf1

2f2

)2 − 3b2f2
1

16f2
2

]
, (23)

and a2
0 = 6K/ρ0 where:

ρ0 =
f2

1

2χ2f2
− 1

2

.
ϕ

2

0

(
1 +

bf1

2f2

)
. (24)

Studying perturbation a → a + δa(t) of the “emergent”
universe condition (20) we obtain a harmonic oscillator

equation for δa(t) (here
.
ϕ

2

0 as in (23)):

δ
..
a +ω2δa = 0 ,

ω2 ≡ ρ0

6

[
3

1
2 (1 + bf1/2f2)−

.
ϕ

2

0 χ2b
2/8f2

.
ϕ

2

0 3χ2b2/8f2 − 1
2 (1 + bf1/2f2)

− 1
]
> 0(25)

for −8(1− 1
2

√
3) f2f1 < b < − f2f1 .

The non-Riemannian volume-form formalism was also
successfully applied to propose an qualitatively new
mechanism for a dynamical spontaneous breaking of su-
persymmetry in supergravity by constructing modified
formulation of standard minimal N = 1 supergravity
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as well as of anti-de Sitter supergravity in terms of a
non-Riemannian volume elements [7, 20]. This natu-
rally triggers the appearance of a dynamically generated
cosmological constant as an arbitrary integration con-
stant which signifies dynamical spontaneous supersym-
metry breakdown. The same formalism applied to anti-de
Sitter supergravity allows us to appropriately choose the
above mentioned arbitrary integration constant so as to
obtain simultaneously a very small effective observable
cosmological constant as well as a large physical gravitino
mass as required by modern cosmological scenarios for
slowly expanding universe of the present epoch [23–25].

2. Dynamical Spacetime formulation - Let us
now observe that the non-Riemannian volume element
Ω = Φ(B) (3) on a Riemannian manifold can be rewrit-
ten using Hodge duality (here D = 4) in terms of a
vector field χµ = 1

3!
1√
−g ε

µνκλBνκλ so that Ω becomes

Ω(χ) = ∂µ
(√
−gχµ

)
, i.e. it is a non-canonical volume ele-

ment different from
√
−g, but involving the metric. It can

be represented alternatively through a Lagrangian multi-
plier action term yielding covariant conservation of a spe-
cific energy-momentum tensor of the form T µν = gµνL:

S(χ) =

∫
d4x
√
−g χµ;νT µν =

∫
d4x∂µ

(√
−gχµ

)(
−L
)
,

(26)
where χµ;ν = ∂νχµ − Γλµνχλ.

The vector field χµ is called “dynamical space time
vector” , because of the energy density of T 00 is a canon-
ically conjugated momentum w.r.t. χ0, which is what we
expected from a dynamical time.

In what follows we will briefly consider a new class of
gravity-matter theories based on the ordinary Rieman-
nian volume element

√
−g but involving action terms of

the form (26) where now T µν is of more general form
than T µν = gµνL. This new formalism is called “dy-
namical spacetime formalism” [26, 27] due to the above
remark on χ0.

Ref.[28] describes a unification between dark energy
and dark matter by introducing a quintessential scalar
field in addition to the dynamical time action. The total
Lagrangian reads:

L =
1

2
R+ χµ;νT µν −

1

2
gαβφ,αφ,β − V (φ), (27)

with energy-momentum tensor T µν = − 1
2φ

,µφ,ν . From
the variation of the Lagrangian term χµ;νT µν with re-
spect to the vector field χµ, the covariant conservation
of the energy-momentum tensor ∇µT µν = 0 is imple-
mented. The latter within the FLRW framework forces
the kinetic term of the scalar field to behave as a dark
matter component:

∇µT µν = 0 ⇒ φ̇2 =
2Ωm0

a3
. (28)

where Ωm0 is an integration constant. The variation with
respect to the scalar field φ yields a current:

− V ′(φ) = ∇µjµ, jµ =
1

2
φ,ν(χµ;ν + χν;µ) + φ,µ (29)

For constant potential V (φ) = ΩΛ = const the current is
covariantly conserved.

In the FLRW setting, where the dynamical time ansatz
introduces only a time component χµ = (χ0, 0, 0, 0), the
variation (29) gives:

χ̇0 − 1 = ξ a−3/2, (30)

where ξ is an integration constant. Accordingly, the
FLRW energy density and pressure read:

ρ =

(
χ̇0 −

1

2

)
φ̇2 + V, p =

1

2
φ̇2(χ̇0 − 1)− V. (31)

Plugging the relations (28,30) into the density and the
pressure terms (31) yields the following simple form of
the latter:

ρ = ΩΛ +
ξΩm0

a9/2
+

Ωm0

a3
, p = −ΩΛ +

ξΩm0

2 a9/2
. (32)

In (32) there are 3 components for the ”dark fluid”: dark
energy with ωΛ = −1, dark matter with ωm = 0 and an
additional equation of state ωξ = 1/2. For non-vanishing
and negative ξ the additional part introduces a minimal
scale parameter, which avoids singularities. If the dy-
namical time is equivalent to the cosmic time χ0 = t,
we obtain ξ = 0 from Eq.(30), whereupon the density
and the pressure terms (32) coincide with those from the
ΛCDM model precisely. The additional part (for ξ 6= 0)
fits more to the late time accelerated expansion data, as
observed in Ref. [29].

Ref. [30] shows that with higher dimensions, the solu-
tion derived from the Lagrangian (27) describes inflation,
where the total volume oscillates and the original scale
parameter exponentially grows.

The dynamical spacetime Lagrangian can be general-
ized to yield a diffusive energy-momentum tensor. Ref.
[31] shows that the diffusion equation has the form:

∇µT µν = 3σjν , jµ;µ = 0, (33)

where σ is the diffusion coefficient and jµ is a current
source. The covariant conservation of the current source
indicates the conservation of the number of the particles.
By introducing the vector field χµ in a different part of
the Lagrangian:

L(χ,A) = χµ;νT µν +
σ

2
(χµ + ∂µA)2, (34)

the energy-momentum tensor T µν gets a diffusive source.
From a variation with respect to the dynamical space
time vector field χµ we obtain:

∇νT µν = σ(χµ + ∂µA) = fµ, (35)
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a current source fµ = σ(χµ + ∂µA) for the energy-
momentum tensor. From the variation with respect to
the new scalar A, a covariant conservation of the current
emerges fµ;µ = 0. The latter relations correspond to the
diffusion equation (33).

Refs.[33–36] study the cosmological solution using the
energy-momentum tensor T µν = − 1

2g
µνφ,λφλ. The total

Lagrangian reads:

L =
1

2
R− 1

2
gαβφ,αφ,β − V (φ)

+χµ;νT µν +
σ

2
(χµ + ∂µA)2.

(36)

The FLRW solution unifies the dark energy and the
dark matter originating from one scalar field with possi-
ble diffusion interaction. Ref.[32] investigates more gen-
eral energy-momentum tensor combinations and shows
that asymptotically all of the combinations yield ΛCDM
model as a stable fixed point.

Scale Invariance, Fifth Force and Fermionic
Matter - The originally proposed theory with two
volume elements (integration measure densities) [5, 6],
where at least one of them was a non-canonical one and
short-termed “two-measure theory” (TMT), has a num-
ber of remarkable properties if fermions are included in
a self-consistent way [6]. In this case, the constraint that
arises in the TMT models in the Palatini formalism can
be represented as an equation for χ ≡ Φ/

√
−g, in which

the left side has an order of the vacuum energy density,
and the right side (in the case of non-relativistic fermions)
is proportional to the fermion density. Moreover, it turns
out that even cold fermions have a (non-canonical) pres-
sure Pnoncanf and the corresponding contribution to the
energy-momentum tensor has the structure of a cosmo-
logical constant term which is proportional to the fermion
density. The remarkable fact is that the right hand side
of the constraint coincide with Pnoncanf . This allows us to
construct a cosmological model[37] of the late universe in
which dark energy is generated by a gas of non-relativistic
neutrinos without the need to introduce into the model
a specially designed scalar field.

In models with a scalar field, the requirement of scale
invariance of the initial action[5] plays a very constructive
role. It allows to construct a model[38] where without
fine tuning we have realized: absence of initial singularity
of the curvature; k-essence; inflation with graceful exit to
zero cosmological constant.

Of particular interest are scale invariant models in
which both fermions and a dilaton scalar field φ are
present. Then it turns out that the Yukawa coupling
of fermions to φ is proportional to Pnoncanf . As a re-
sult, it follows from the constraint, that in all cases when
fermions are in states which constitute a regular barionic
matter, the Yukawa coupling of fermions to dilaton has
an order of ratio of the vacuum energy density to the

fermion energy density[39]. Thus, the theory provides a
solution of the 5-th force problem without any fine tuning
or a special design of the model. Besides, in the described
states, the regular Enstein’s equations are reproduced. In
the opposite case, when fermions are very deluted, e.g. in
the model of the late Universe filled with a cold neutrino
gas, the neutrino dark energy appears in such a way that
the dilaton φ dynamics is closely correlated with that of
the neutrino gas[39].

A scale invariant model containing a dilaton φ and dust
(as a model of matter)[40] possesses similar features. The
dilaton to matter coupling ”constant” f appears to be
dependent of the matter density. In normal conditions,
i.e. when the matter energy density is many orders of
magnitude larger than the dilaton contribution to the
dark energy density, f becomes less than the ratio of the
”mass of the vacuum” in the volume occupied by the
matter to the Planck mass. The model yields this kind
of ”Archimedes law” without any especial (intended for
this) choice of the underlying action and without fine tun-
ing of the parameters. The model not only explains why
all attempts to discover a scalar force correction to New-
tonian gravity were unsuccessful so far but also predicts
that in the near future there is no chance to detect such
corrections in the astronomical measurements as well as
in the specially designed fifth force experiments on inter-
mediate, short (like millimeter) and even ultrashort (a
few nanometer) ranges. This prediction is alternative to
predictions of other known models.
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